一、前置背景
在户外机器人领域,像割草机器人这类需在复杂环境精准作业的设备,卫星定位导航技术是其自主运行的核心支撑。然而,户外场景挑战重重:
- 一方面,真实环境里卫星信号易被树木、建筑物等遮挡产生多径效应,严重影响定位精度;
- 另一方面,传统实地测试受场地、天气等因素限制,成本高、周期长,且难以全面覆盖各类极端或复杂应用场景,无法高效验证机器人定位系统的精度与稳定性。
同时,对于户外机器人而言,仅依靠 GNSS (全球导航卫星系统)难以满足高精度作业需求,双天线定向技术能为机器人提供航向等姿态信息,RTK(实时动态差分定位)技术可实现厘米级的定位精度,这些技术与GNSS结合,是户外机器人实现精准作业的关键。
为在产品研发早期充分且高效地测试户外机器人的卫星定位导航性能,以及双天线定向、RTK 厘米级定位的性能,室内仿真测试成为关键手段。德思特凭借先进的GNSS模拟技术,推出针对户外机器人的高精定位仿真测试方案,为户外机器人定位系统研发提供可靠测试保障。
二、方案内容
1.核心设备与技术
采用德思特GNSS模拟器,该模拟器可生成实时/预设/录制的位置信息、6DOF(六自由度)姿态信息以及多径模型。
此外,它可以通过多实例功能实现流动站主天线+从天线仿真以及RTK虚拟信号(等同于CORS站信号的仿真,通过WIFI、5G等方式传输)实现RTK定位+双天线定向:


2.测试对象
以配备双天线+RTK(实时动态差分定位)技术的户外机器人(如割草机器人)为待测件,待测件包含待测试的定位算法。
3.测试价值
- 可实现全球范围内任意地点与位置的测试,突破实地测试的地域限制。
- 生成的卫星信号与真实信号具有高一致性,能模拟真实环境下的定位场景。
- 具备双天线同步仿真能力,可精准模拟机器人双天线定位的情况。
- 支持RTK基准站与RTCM(无线电技术委员会海事服务)消息模拟,为RTK定位测试提供完整环境。
- 接口开放且集成度高,易于部署,能快速搭建测试平台。
- 可选支持硬件在环仿真功能
4.解决的问题
- 可在室内构建完整测试平台,实现户外机器人定位系统的早期验证,提升研发效率。
- 支持对户外机器人姿态的精细仿真,全面测试机器人在不同姿态下的定位表现。
- 能够实现厘米级的高精定位测试,满足户外机器人对定位精度的高要求。
- 可模拟树木、楼层等遮挡引起的多径问题,测试机器人定位系统在复杂环境下的抗干扰能力。
三、机器人定位导航模组的RTK高精定位+双天线测试实操
本次我们测试使用的是行业内较为通用的和芯星通UM982模组来进行验证测试。在该测试demo中,我们使用德思特GNSS模拟器GTS-P72的双端口能力来实现对于主从天线的仿真,并采用虚拟基站来进行RTK信息的仿真。
1.方案构成
本次测试我们需要用到的硬件有:
- GTS P74 GNSS模拟器以及配套的显示器、鼠标、键盘
- 和芯星通GNSS接收机,型号:UM982,作为待测定位设备
- PC一台
- 安装和芯星通上位机软件Uprecise(V2.0.1037)
- 注意:如果使用其他版本,可能部分设置有所变化
- 网线、射频电缆等其他连接用配件
2.硬件连接图
按照如下示意图连接:
- 射频线缆前端需要添加衰减器30dB,确保最终输出功率为-110dBm
- GNSS模拟器需要与DUT上位机位于可通信网络,可提前“ping”验证通路情况

3.GNSS模拟器Skydel软件场景配置
在本案例中,我们需要打开三个GNSS示例,分别用于“主天线”、“副天线”、“虚拟基站”模拟——
- 每一路模拟信号均如下:
- GPS L1CA + L5
- BEIDOU B1I + B2I
- GALILEO E1 + E5
- 模拟的轨迹是无人机在美洲某郊区实行农业任务的往复“S型”轨迹
(1)主天线实例
①打开Skydel预设好的实例“主天线”,将会加载以上信息并设置好工作实例【往复“S型”轨迹】
- 星座频点与上述要求一致
- 往复“S型”轨迹
- 此时output启用的是DTA-2116 SDR,硬件序号为0,1


②将该案例设置为时间同步中的“主实例”。

③设置主天线位置相对于车辆几何中心的偏移量(也可设置为0)。

(2)从天线实例
①打开Skydel预设好的实例“从天线”/或复制“主天线实例”,将会加载以上信息并设置好工作实例
- 星座频点与上述要求一致
- 往复“S型”轨迹
- 此时output启用的是DTA-2116 SDR,硬件序号为2,3


②将该案例设置为时间同步中的“从实例”,同步上述所有设置。

③设置副天线位置相对于车辆几何中心的偏移量。

注意:
主天线位置与副天线位置差距应设置为大于等于50cm,在本案例中:
- 主天线相对车辆几何中心偏移量为(0,0,0)
- 主天线相对车辆几何中心偏移量为(0,3,0),且拥有角度偏差(30°,30°,30°)
即二者位置差为3m,且存在角度差
④此时无需额外配置就可使得主天线、副天线绑定保持相对静止,除二者位置有绝对偏差外,其他所有信息(卫星状况、时间、天线增益)等全部一致,符合真实世界的应用场景。
(3)RTK虚拟基站实例
①打开Skydel预设好的实例“RTK基站”,将会加载以上信息并设置好工作实例:
- 星座频点与上述要求一致
- 启用的是“NoneRT”虚拟SDR,不占用真实SDR配置
- 基站坐标为一确定静态点,位于往复“S型”轨迹附近的某个高海拔(50m)位置处,作为静态基站。


②将该案例设置为时间同步中的“从实例”,保证时间一致。

③设置RTK基站传输类型为“Ntrip”,设置传输端口为“2101”,允许本地计算机访问,传输RTCM消息类型设置为:
- 1006 (Base station position)
- 1033(Receiver & antenna)
- 1077 (MSM7 GPS)
- 1127 (MSM7 BeiDou)

④在终端框中输入“ifconfig”查询到本机IP地址作为后续的RTCM传输IP地址。
此时,我们就完成了所有配置,可以点击从实例中的“Start”开始仿真,此时三个实例会全部启动仿真。

4.UM982上位机设置
①在准备好的PC上连接UM982接收机,打开Uprecise,在上方receiver选择对应串口号,设置波特率模式为:“Autobauding”,等待连接成功。

②配置RTK设置:点击左侧工具箱标识,选择“RTCM数据流”。

点击“Input”,配置RTK流动站设置如下:
- IP号:192.168.150.27(匹配GNSS模拟器IP地址)
- 端口号:2101
- 设置挂载点:
- SKYDEL
- User ID、password:空白
- 配置完成后,点击”确认”。
点击“Output”,选中接收机对应的COM口,配置完成后,点击”确认”。

返回RTCM数据流界面,勾选“Hex”,点击“连接”,开始正常传输RTCM数据。

5.结果
等待一段时间后,应观测到地图中的定位状态变更为:RTK Fixed,则完成本地的基准站-流动站双站同步仿真,并能够观测到由于主从天线带来的定向效果。
观测定位情况
打开GNSS信号观测窗口、Chart图,点击冷启动,等待信号稳定后,出现卫星信号柱状图与定位信息,并进入RTK工作模式。

观测定向情况
点击“姿态”窗口,可观察到实时航向角(方位角),基本与仿真过程中的方位角一致。

至此,我们在一台设备内完成了对于主天线+从天线+一个独立的RTK基站的全部仿真。
- 相关产品

• 软件定义的GNSS模拟器
高性能GNSS模拟器具有灵活的软件定义平台和API,且支持所有的GNSS星座与波形,具有超高的精度,分辨率,以及动态性能,模拟迭代率可达1000 Hz,强大的软件定义实现通道数无限制。广泛应用于汽车HIL测试,导航芯片、消费电子、终端测试,航空航天模拟,以及干扰抵抗测试等领域。
